The generator matrix 1 0 0 0 1 1 1 X^2 1 1 X^2+X 1 1 X X^3+X^2+X 1 1 1 1 X X^3 1 X^3 1 X^3+X^2+X X^2+X X^3+X^2 1 1 X^2 X^2 X^3+X^2+X 1 X^2+X 1 1 1 1 1 1 X^2+X X^3+X^2 1 1 1 X^2+X X^3 1 1 1 0 1 0 0 0 X^3+1 X^3+1 1 X^3+X^2+X X^3+X X^3+X^2+X X+1 X^2+1 1 1 X+1 X^3+X^2+1 X X^3+X^2+X+1 1 X^3+X X^3 X^2+X X^2+X+1 1 1 1 X^3+X^2+X X 1 X^2 1 X^3+1 X^3+X^2+X X^3+X^2+X+1 X^3+X^2+1 X^2+X X^2 X^3+X 1 X^3 1 X^3+X^2 X X^3+1 1 1 X^2+X X^2 X^3 0 0 1 0 1 1 X^2 X^2+1 0 X^3+1 1 X^2+1 X X^2 X^3+X^2+X+1 X^3+X^2+X X^3+X+1 X^2+X+1 1 X^3+X^2+1 1 0 X^2 X 1 X^2 X^3+X 1 X^3+X X^3+X^2+X+1 1 X^2+1 X^2+X+1 1 X^2+1 X^2+X X^2+X X^3+X^2+1 X^2+X+1 0 X^3+X^2+X X^3 X^3 X X^3 X^3+X+1 X^3+1 X^3+X X^3+1 0 0 0 0 1 1 X^2 X^2+1 1 X^2+X+1 X^3+X X^2+1 X^2+1 X^2 X^3+X^2+1 X^3+X^2 X^3+1 X^3+X^2+X+1 X^3+X^2+X X^2+X X^2+X X^3+X^2 X^2+X+1 1 X^3+X^2 X^2+1 X^3+X^2+X X^3+X^2+1 X^2+1 X+1 X^3+1 X^2+1 X^2 X^3+X^2+X+1 X X^3+X^2 X+1 X^2 X^3+X^2+X+1 X^3+X X^2+1 1 0 X X^3+1 X^3+X^2+X X^2 X^3+1 X^3+X^2+X 1 0 0 0 0 0 X^3+X^2 0 X^3+X^2 0 X^3 X^3 X^3 X^3 X^3 X^3 X^3 0 0 0 0 0 X^3 X^2 X^2 X^2 X^2 X^2 X^3+X^2 X^3+X^2 X^2 0 X^3 X^2 X^3+X^2 X^2 0 X^2 X^3+X^2 X^3 X^2 0 X^3 X^2 X^3+X^2 X^3 X^2 X^2 X^3 0 0 X^3+X^2 generates a code of length 50 over Z2[X]/(X^4) who´s minimum homogenous weight is 42. Homogenous weight enumerator: w(x)=1x^0+133x^42+884x^43+2592x^44+6044x^45+11531x^46+19856x^47+29802x^48+38574x^49+42211x^50+39586x^51+30392x^52+20286x^53+11330x^54+5302x^55+2195x^56+960x^57+322x^58+82x^59+38x^60+2x^61+9x^62+2x^63+4x^64+6x^65 The gray image is a linear code over GF(2) with n=400, k=18 and d=168. This code was found by Heurico 1.16 in 380 seconds.